

Thieno[3,2-b]indole Based Organic Dyes for Efficient Dye-Sensitized Solar Cells

Xue-Hua Zhang, Yan Cui, Ryuzi Katoh, Nagatoshi Koumura, * and Kohjiro Hara* National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Dye-Sensitized Solar Cells (DSSCs):

Low cost and efficient devices for the conversion of sunlight into electricity

Main processes in DSSCs:

Dye + h $\nu \rightarrow$ Dye* Dye* \rightarrow Dye+ + e⁻(TiO₂) 2e⁻ + 3I₃⁻ \rightarrow 3I⁻ 3I⁻ + 2Dye+ \rightarrow I₃⁻ + 2Dye

独立行政法人產業技術総合研究所

AIST

独立行政法人產業技術総合研究所

Photophysical, electrochemical and photoelectrochemical properties of the dyes

	λ _{max} / nm (ε / 10 ⁴ M ⁻¹ cm ⁻¹)	λ _{max} / nm (on TiO ₂ film)	E _{ox} /V (vs NHE)	<i>E</i> ₀₋₀ /eV	E _{ox} */V
					(vs NHE)
MKZ-39	502 (4.3)	451	1.01	1.97 (630 nm)	-0.96
MKZ-40	496 (4.5)	458	0.89	1.89 (655 nm)	-1.00
MKZ-41	490 (4.6)	466	0.83	1.84 (674 nm)	-1.01
	J _{sc} (mA cm ⁻²)	V _{oc} (V)	FF	η (%)	
MKZ-39	13.8	0.70	0.77	7.4	
MKZ-40	14.6	0.70	0.76	7.8	
MKZ-41	15.0	0.66	0.74	7.3	

独立行政法人產業技術総合研究所

Schematic energy diagram for a DSSC based on MKZ-40, a nanocrystalline TiO_2 electrode, and the I/I_3^- redox couple.

Transient absorption spectra indicate that the electron injection efficiency and charge recombination rates are very similar, so smaller driving force for dye regeneration of MKZ-41 might be the main reason for its lower photovoltaic performance due to the increased HOMO energy level.

Conclusions:

• In similar donor- π -acceptor structure, the electron donating ability of thieno[3,2-*b*]indole unit is stronger than that of carbazole; using thieno[3,2-*b*]indole as the donor part could hold the dye molecule in a more planar conformation compared with those carbazole based dyes.

◆ The photovoltaic performance of the dyes is dependent strongly on their HOMO energy level, which has much relationship with the regeneration of the dyes.

